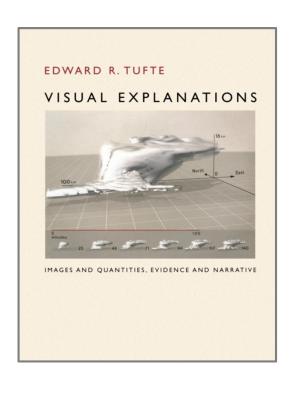
Displaying Visual Evidence in Scientific Research:

Help viewers make valid scientific decisions

Steve Lee, PhD


CLIMB Program
Assistant Director
April 2013

Our CLIMB curriculum of workshops on communication in scientific research

- 1) Delivering scientific presentations and posters for impact:

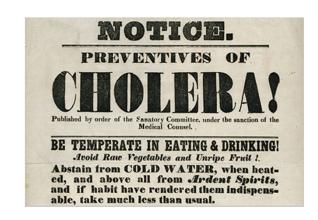
 Make it stick with SUCCESs
- 2) Crafting the introduction to a scientific presentation:
 Create a mystery box
- 3) Communicating and collaborating across disciplines:
 Use simple words
- 4) Displaying visual evidence in scientific presentations: Help viewers make valid scientific decisions

Let's consider 2 case studies from Tufte's Visual Explanations

Effective displays help lead to valid arguments and true conclusions.

Ineffective displays often lead to invalid arguments and false conclusions.

Garbage In - Garbage Out


Case 1: Dr John Snow intervenes in a cholera epidemic

Context

- Cholera breaks out in London in 1854
- Cholera: rapid dehydration (diarrhea, vomiting) and death
- fatality rate: 50%
- killed millions in other epidemics

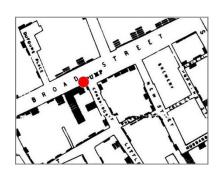
Problems

- Deficiencies in:
 - o understanding of bacteria
 - o technology
 - o sanitary living conditions

Questions

- How is cholera transmitted?
- How can we stop this cholera epidemic?

Hypotheses


Cholera is spread by:

- (1) breathing vapors of decaying matter
- (2) drinking contaminated water

Dr John Snow investigated the cholera epidemic

Consider the data

- Are locations of water sources and deaths significant?
- He obtained death certificates and created a visual map.

(see handout)

Communicate and convince

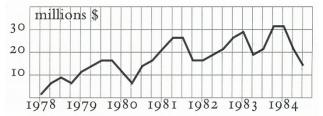
- He reported his findings to the local authorities
- He had to convince them that a specific water source was contaminated, and caused cholera

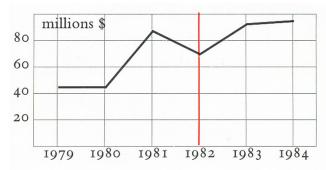
Conclusions

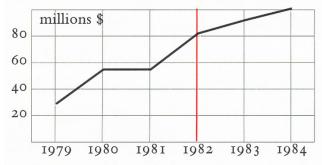
- Handle on the Broad Street water pump was removed
- Epidemic soon ended

Snow's visual evidence helped to make valid scientific decisions.

Is your visual display helping or hindering valid scientific decisions?


Mark Monmonier's How to Lie with Maps aggregates of Snow's map:




Gregory Joseph's Modern Visual Evidence quarterly data

fiscal years

calendar years

Case 2:

Decision to Launch the Space Shuttle Challenger in January 1986

Context

- O-rings seal segments of the booster rockets.
- Previous launches showed damage to the O-rings.

Problems

- All past launches occurred at temperatures of >53 °F.
- Forecasted temperature of the launch was 26-29 °F.

Questions

- Will the O-rings maintain their seal at 26-29 °F?
- Should the launch proceed?

Hypotheses

- Engineers: No, and then Yes
- NASA officials: Yes

Engineers at Morton Thiokol Inc (MTI) initially argued against the launch

- MTI faxed 13 slides to NASA
- Slide 1 of 13

```
BLOWBY HISTORY
SRM-15 WORST BLOW-BY
   0 2 CASE JOINTS (80°), (110°) ARC
   O MUCH WORSE VISUALLY THAN SRM-22
SRM 22 BLOW-BY
  0 2 CASE JOINTS (30-40°)
SRM-13-A, 15, 16A, 18, 23A 24A
   O NOZZIE BLOW-BY
                                [Ref. 2/14-3 6 o
```

Blow-by = soot and gases blowing by O-ring seals

SRM = solid rocket motor

What's missing here?

Engineers at Morton Thiokol Inc (MTI) initially argued against the launch

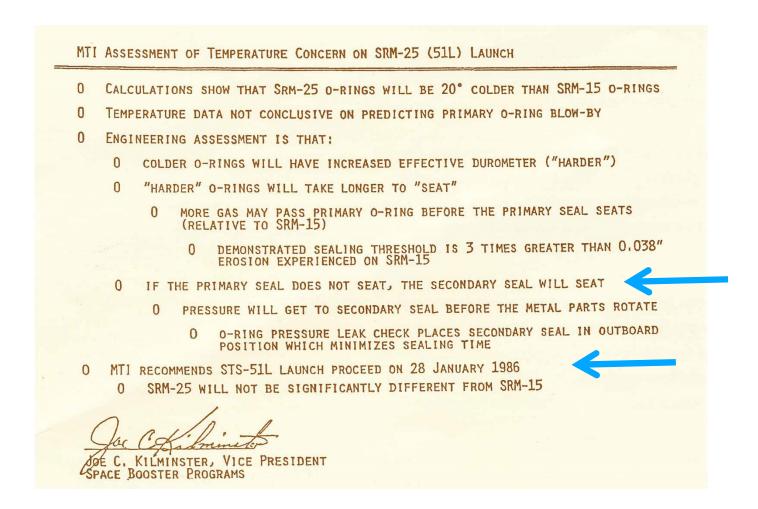
• Slide 2 of 13

	HIS TORY	OF O (DEGRE		1PERATURES
MOTOR	MBT	AMB	O-RING	WIND
DM-4	68	36	47	10 тен
Dm - 2	76	45	52	10 mpst
Qm - 3	72.5	40	48	10 m PI+
Qm-4	76	48	51	10 mPH
SRM-15	52	64	53	10 mp+
5RM-22	77	78	75	10 mpH
5 RM - 25	55	26	29 27	10 med 25 mph

What's missing here?

MTI initially argued against the launch

MTI faxed 13 slides to NASA


```
RECOMMENDATIONS:

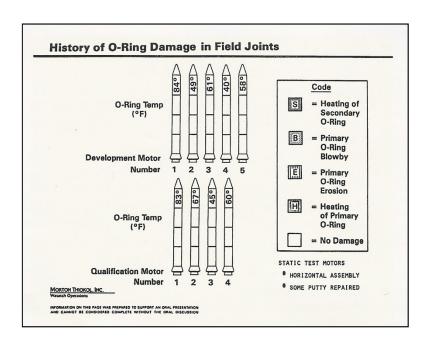
O-RING TEMP MUST BE $\geq 53 \circ AT LAUNCH

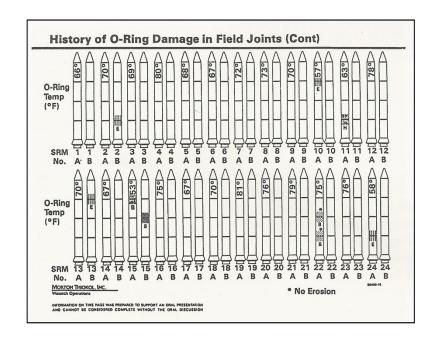
DEVELOPMENT MOTORS AT 47 \circ 52 \circ With
PUTTY PACKING HAD NO BLOW-BY
SRM 15 (THE BEST SIMULATION) WORKED AT 53 \circ
OPROJECT AMBIENT CONDITIONS (TEMP \( \frac{1}{2} \) WIND)
TO DETERMINE LAUNCH TIME
```

- How would you respond to this argument? Was this effective?
- This was MTI's only no-launch recommendation in 12 years.
- A NASA official responded that he was "appalled" by MTI's recommendation not to launch, and asked them to reconsider.

NASA officials asked MTI to reconsider, and MTI reversed their decision

After 1 minute from launch, the space shuttle Challenger exploded and 7 astronauts died.

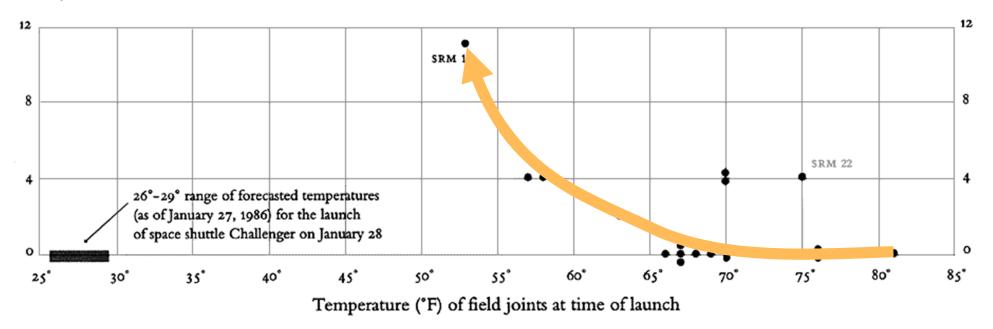

<u>Post-Analysis:</u> MTI's original conclusion was <u>true</u>, but with an <u>ineffective</u> argument.


• Commission investigating the accident:

"A careful analysis of the flight history of O-ring performance would have revealed the correlation of O-ring damage and low temperature. Neither NASA nor Thiokol carried out such an analysis; consequently, they were unprepared to properly evaluate the risks of launching the 51-L [Challenger] mission in conditions more extreme than they had encountered before."

 How might the data have been better analyzed, presented and communicated?

Let's evaluate MTI's 2nd attempt in visual displays after the accident



- See the handout
- What are the pro's and con's of this data display?
- What can be done to help viewers make a valid scientific decision?

Tufte's revision summarizes all data into a graph with a "Damage Index"

O-ring damage index, each launch

Tufte's visual display would have helped viewers make a valid scientific decision.

Take-Home Lessons from Two Case Studies

- Case 1: John Snow intervened in a cholera epidemic
 - O He summarized all relevant info in a simple map
 - He helped viewers make a valid scientific decision
- Case 2: Decision to launch the space shuttle
 - MTI had all info, but created an ineffective data display, even after the accident
 - Tufte's revision summarized all relevant info in a simple graph
 - Tufte helped viewers make a valid scientific decision